Selected Publications
Complete list of publications: [Google Scholar] [Pubmed]
Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain.
Barber AF, Fong SY, Kolesnik A, Fetchko M, Sehgal A. (2021) Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proc Nat Acad Sci USA 118: e2019826118.
Hugin+ neurons provide a link between sleep homeostat and circadian clock neurons.
Schwarz JE, King AN, Hsu CT, Barber AF and Sehgal A. (2021) Hugin+ neurons provide a link between sleep homeostat and circadian clock neurons. Proc Nat Acad Sci USA 118: e2111183118. DOI: 10.1073/pnas.2111183118
Sleep signals are integrated into an output arm of the circadian clock.
King AN, Barber AF, Schwarz J and Sehgal A. Sleep signals are integrated into an output arm of the circadian clock. In Preparation.
Monitoring electrical activity in Drosophila circadian output neurons.
Barber AF and Sehgal A. Monitoring electrical activity in Drosophila circadian output neurons. Methods Mol Biol Invited review, in press. Cell Metabolism 27: 951-953
Preview: Cold temperatures fire up circadian neurons.
Barber AF and Sehgal A. (2018) Preview: Cold temperatures fire up circadian neurons.
A peptidergic circuit links the circadian clock to locomotor activity.
King AN, Barber AF, Smith AE, Dreyer AP, Sitaraman D, Nitabach MN, Cavanaugh DJ, & Sehgal A. (2017). A peptidergic circuit links the circadian clock to locomotor activity. Curr Biol 27: 1915-27
Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin producing cells.
Barber AF, Erion R, Holmes TC and Sehgal A. (2016). Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin producing cells. Genes Dev 30: 2596-2606
Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics
Covarrubias M, Barber AF, Carnevale V, Treptow W, and Eckenhoff, RG. (2015) Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics Biophys J 109: 2003-11
Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms.
Barber AF, Carnevale V, Klein ML, Eckenhoff RG, and Covarrubias M. (2014) Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. Proc Natl Acad Sci USA 111: 6726-31
Exploring Volatile General Anesthetic Binding to a Closed Membrane-Bound Bacterial Voltage-Gated Sodium Channel via Computation
Raju SG, Barber AF, Lebard DN, Klein ML and Carnevale V. (2013) Exploring Volatile General Anesthetic Binding to a Closed Membrane-Bound Bacterial Voltage-Gated Sodium Channel via Computation. PLOS Comput Biol 9: e1003090
Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel.
Barber AF, Carnevale V, Raju SG, Amaral C, Treptow W and Klein ML (2012) Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. BBA Biomembranes 1818: 2120-25.
Novel activation of voltage gated K+ channels by sevoflurane.
Barber AF, Liang Q, Covarrubias M. (2012) Novel activation of voltage gated K+ channels by sevoflurane. J Biol Chem 287: 40425-32
Molecular mapping of general anesthetic sites in a voltage-gated ion channel.
Barber AF, Liang Q, Amaral C, Treptow W and Covarrubias M. (2011) Molecular mapping of general anesthetic sites in a voltage-gated ion channel. Biophys J 101:1613-22